
1028 Technical Notes 

increased Bow velocity, leading to increased &f and e. For 
a practising engineer the maximum temperature along the 
left and right interfaces is useful information, given in non- 
dimensional form in Tables 3 and 4. In general, the impact 
of wall conduction on & and 0 decreases with decrease in 
:‘T. 

CONCLUSIONS 

In the numerical study of the effect of wall conduction on 
laminar heat transfer between two vertical plates subjected 
to asymmetric heating, walls are heated by subjecting their 
external surface to constant temperature. The governing 
equations were solved by an implicit finite difference tech- 
nique. Calculations were made for a wide range of inde- 
pendent parameters (Gr, r/B, K, L/B and y7). The heat 
transfer and fluid flow in the channel are proportional to the 
buoyancy forces. Higher values of Gr, K and yr contribute 
to higher buoyancy forces; lower values of t/B result in 
higher buoyancy forces. The quantitative effect of wail con- 
duction on & and @ under asymmetric heating conditions 
can be summarized as follows. 

(I) For Gr = 10’. K = 1, r/B = 0.5. L/B = I and yT = I, 
.il decreases to 51.6% of the ti for I/B = 0. The heat flow 
rate reduces to 23.1% of the Q for r/B =z: 0. This indicates 
that the wall conduction reduces fi and a for yT = I. 

(2) For Gr = IO’, K = I, r/B = 0.5, L/B = 1 and yT = 0, 
.if reduces to 66.7% of the ni for r/R = 0. The 0 reduces to 
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24.2% of 0 for t/B = 0. This implies that the asymmetric 
heating (yT = 0) has less impact on ni and 0 than the wall 
conduction. 
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INTRODUCTION 

1% ~0s’~ of the previous studies on heat transfer in saturated 
porous media, the the~ophysical properties of &rid were 
assumed to be constant. However, it is known that these 
properties may change with temperature, especially for fluid 
viscosity. To accurately predict the heat transfer rate, it is 
necessary to take into account this variation of viscosity. In 
spite of its importance in many applications, this effect has 
received rather little attention. 

Previous results [I-4] have shown that when the effects of 
variable viscosity are taken into consideration, the critical 
Rayleigh number for the onset of convection is substantially 
reduced from the dassical value. atthough the associated 
wave number is nearly the same. For a two-dimensional 
cavity, it is found that the Bow and temperature gelds become 
unstable at even moderate values of the Rayleigh number 
and exhibit a fluctuating convective state analogous to that 
observed for the constant viscosity case. In summary, pre- 
vious studies have considered mostly the instability of the 
flow and temperature fields caused by the variation of 
viscosity. Heat transfer results, however, are still very limited. 
For reported heat transfer data, the working fluids con- 
sidered are mainly liquids, especially water. For gases, vis- 
cosities vary quite differently from liquids. Therefore, it is 
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expected that the heat transfer results for gases also be dif- 
ferent from those in liquids. This discrepancy in heat transfer 
wiU be further elaborated upon in the following analysis. 

In this note, the effect of variable viscosity is considered 
for mixed convection along a vertical plate embedded in a 
saturated porous medium. The limiting cases of natural and 
forced convection are also examined. Similarity solutions are 
obtained for an isothermally heated plate with fluid viscosity 
varied as an inverse function of temperature. As pointed 
out by Cheng and Minkowycz [.5], problems of this kind 
have important applications in geophysics, particularly, geo- 
thermal energy extraction and underground storage systems. 
In addition, it also finds very useful applications in the design 
of insulation systems employing porous media. 

ANALYSIS 

Consider a vertical plate embedded in a saturated porous 
medium. The fluid and medium properties are assumed to 
be isotropic and constant, except for the fluid viscosity. The 
governing equations based on Darcy’s law are given by 
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NOMENCLATURE 

a constant defined in equation (9a) Greek symbols 
[K-i Pa-’ s-i] 

f dimensionless stream function ; 
effective thermal diffusivity [m2 s-‘1 
coefficient of thermal expansion [K-l] 

: 
acceleration due to gravity [m s-7 B constant defined in equation (5) [K- ‘1 
local heat transfer coefficient [w m-’ K- ‘1 & thermal boundary-layer thickness [m] 

k” 
permeability [m2] ‘I independent similarity variable 
effective thermal conductivity of the saturated 

$ 
dimensionless thermal boundary-layer thickness 

porous medium [w m- ’ K- ‘] dimensionless temperature 
Nu local Nusselt number, /IX/~ 6, constant defined in equation (19) 
Pe Peclet number, tJ,x/u P dynamic viscosity [Pa s] 
P p=u= Pal Y kinematic viscosity [m’ s- ‘1 
p Rayleigh number, Kgg(T,,- Tpo)x/v;ou P fluid density [kg me31 

temperature [K] Y stream function. 
T, constant defined in equation (9b) [K] 
TLl temperature of plate [K] subscripts 
T, ambient temperature p] fc forced convection 
u,a velocity components in x- and ydirection nix mixed convection 

[m s- ‘1 nc natural convection 
Va free stream velocity [m s- ‘1 0 condition at the wall 
x. y Cartesian coordinates [ml. cc property related to reference state. 

K ap 
“=--I% 

0 
thus selected for the correlations are very practical in most 
applications. 

Having invoked the Boussinesq and boundary-layer 

‘$+‘gaa($$+$) (4) function,*,aie 
approximation the governing equations in terms of stream 

; = +[I +y(T- T,)] 
I 

(5) (T-Te)$=gg+Kp,gfla(T-Te)‘g (11) 

where the viscosity of fluid has been assumed to be an inverse 
linear function of temperature. This is a reasonably good 
approximation for liquids such as water and crude oil [6]. 

The boundary conditions are given by 

y=O, T= To. o=O (6) 

y-+co, T=T,, u = 0 (natural convection) (7a) 

= V, (mixed and forced convection). (7b) 

Equation (5) can be rewritten as 

b = a[ T- T,] 

where a = y/pg and T, = T,- I/y. Both a and T. are 
constant, and their values depend on the reference state and 
the thermal property of the fluid, i.e. y. In general, a > 0 for 
liquids, and a < 0 for gases. (The viscosity of a liquid usually 
decreases with increasing temperature while it increases for 
gases.) 

To further demonstrate the appropriateness of equation 
(5). correlations between viscosity and temperature for air 
and water are given below because these two are the most 
common working fluids found in engineering applications. 

For air 

; = - 123.2(T-742.6). 

and for water 

based on T, = 293 K (20°C) (9) 

i = 29.83(T-258.6). 

based on T, = 288 K (ISaC). (10) 

Tbe data used for these comlations are taken from ref. [A. 
While equation (9) is good to within I .2% from 278 K (SC) 
to 373 K (lOO’C), equation (10) is good to within 5.8% from 
283 K (10°C) to 373 K (BXYC). The reference temperatures 

ayasr avaT a9 
-----=2-T. a~ h ax ay ay (12) 

With the properly chosen similarity variables, equations (I I) 
and (I 2) can be transformed to a set of ordinary differential 
equations. 

Natural convection 
The suitable similarity variables for natural convection are 

q = (Ra)’ ‘J/X (13) 

Y = a(Ra)’ ‘f(q) (14) 

0 = (T-T,)/(T‘,-T,). 

After transformation, the resulting equations are 

(15) 

(16) 

where 0, is a constant and is defined by 

T,-T,=_ 
ee = T,-T, 

1 

y(T,-T,)’ 

Its value is determined by the viscosity of the fluid in 
consideration and the operating temperature dierence. A 
large value of 6, implies either y or (To- T,) are small. and 
tbe effects of variable viscosity can thus be neglected. On the 
other hand, for a smaller value of 6, either the fluid viscosity 
changes markedly with temperature or the operating 
temperature difference is high. In either case, the variable 
viscosity effect is expected to become very important. Also 
bearing in mind that the liquid viscosity varies differently 
with temperature than that of gas, therefore, it is important 
to note that 6, is negative for liquids and positive for gases. 
The concept of this new parameter 0, was first introduced by 
Ling and Dybbs (61 in their study of forced convective flow 
in porous media. However, they did not recognize the sig- 
nificance of the sign of 0,. Although they intended to inves- 
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tigate the variable viscosity effect of Iiquids, the results actu- vection can be readily deduced from equations (24) and (26) 
aIIy applied to gases. by setting h/Pe = 0. Therefore 

The boundary conditions are 

g=o, e=1, J=O (1% 

?I -+ co, 6 = 0, f” = 0. (20) 

With the aid of boundary condition (20), equation (16) can 
be integrated once to give 

y_-!!fs 
c 

(28) 

B”= -jj-fY. (2% 

Mixed comwction 
The appropriate similarity variables for mixed convection 

are 

q = (Pe) il”J+/.v (22) 

Y = n(Pe)‘~2f(@. (23) 

With the aid of boundary condition (?b), equations (11) and 
(12) are transformed to 

e-e, Ra 
f’--, 5-e’ 

c ( > (24) 

0” = -if@ 

and the conesponding boundary conditions are 

P/=0, e=1, f-0 

?)+cc, @=O, f-i. 

(25) 

(26) 

(27) 

Forced con~c~io~ 
It is noted that the governing equations for forced con- 

, 

I 

fw 

(b) 
FIG. I. Variation of shp velocity as a function of t?, : (a) for 

free and forced convection ; (b) for mixed convection. 

RESULTS AND DiSCUSSION 

The transformed ordinary diIIerentia1 equations, with the 
corresponding boundary conditions, are solved by numerical 
integration using the Runge-Kutta method and by the shoot- 
ing technique with a systematic guessing of -O’(O). To verify 
the proper treatment of the problem, the solutions have been 
compared with those of the co~~nding constant-viscosity 
cases 1.5, 8f by setting y = 0. The results are in excellent 
agreement. 

As discussed earlier, a new parameter, 6,, is introduced to 
the present anaiysis to take into account the variation of fluid 
viscosity. To reveai its inIIuencc on the flow and temperature 
fields, the shp velocity and local heat flux are shown in Figs. 
I and 2, respectively. 

It is clearly seen that the slip velocity. i.e. f’(O), is sig- 
nificantly influenced by the value of 6,. In addition, it is found 
that the slip velocities for natural convection are identical to 
those for forced convection. This is verified by substituting 
r) = 0 to equations (21) and (28). For both cases, the velocity 
is increased as 0, + 0 for BP < 0 and decreased as 6, + 0 for 
8, > 0. For mixed convectton, it also increases with Ra/Pe. 
Neve~hei~s, it is noticed that the slip velocity is reduced to 
zero for 0, = t due to an increase in the fluid viscosity. A 

I -- Qwlstant wscosity 

FIG. 2. Variation of LocaI heat flux at wall as a function 
of t?,: (a) for free and forced convection; (b) for mixed 

convection. 
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F--Forced camction Asymptote 
:------Fme Cofmctii Aspgtote 

FIG. 3. Heat transfer results as a function of Ra/Pe. 

further increase in the fluid viscosity, i.e. 0, c I, will result 
in an adverse pressure gradient and separation of flow will 
occur. In that case, boundary-layer approximation fails and 
similarity solutions no longer exist. 

It is observed that for 0, < 0. the solution of local heat 
flux at the wall is increased considerably as tie + 0 while it is 
dramatically reduced as fl,+ 1 for 0, > 0. In addition, it 
asymptotically approached that of the constant-viscosity 
case as 0, -D f co, which implies either y or (To-T,) are 
very small. In either case, this means the variation of fluid 
viscosity is negligible. 

For applications in geothermal engineering, the practical 
interests are the thermal boundary-layer thickness and heat 
transfer rate. Consider thermal boundary-layer thickness 
first. It is found that the effect of variable fluid viscosity is to 
thicken the thermal boundary layer for 6. > 0 as 0, 
approaches unity while it is suppressed for 6, < 0 as 6, 
approaches zero. 

The heat transfer coefficient in terms of the Nusselt number 
is expressed as 

NU 
Ra”2= -[O(O)], for free convection (30) 

and 

$ = -[0’(O)],,,. for mixed convection (31) 

= - [QO& for forced convection. (32) 

Equation (31) is plotted in Fig. 3 as a function of Ru/Pe. 
The limiting cases of free and forced convection are also 
shown as asymptotes in the same figure. The influence of 
variable viscosity on the heat transfer results can be clearly 
observed from this figure. For 0, < 0, the heat transfer rate 
is greater than that for the constant-viscosity case while it is 
less for e. > 0. 

The free convection asymptotes can be obtained by rewrit- 
ing equation (31) as 

For a given Ru, [-6’(O)], can be obtained by solving 
simultaneous equations (17) and (21). Once [-S(O)]= is 
known, the free convection asymptotes can be constructed 
from quation (33). 

CONCLUSION 

For applications in geophysics and insulation engineering, 
an operating temperature difference of 80 K is fairly 
common. This gives 0, = 5.62 for air and 6, = -0.37 for 
water. From the results of the present study, it is estimated 
that, for air, the heat transfer rate based on the constant 
viscosity assumption is about 6% higher than that of the 
present results, and 40% lower for water, Therefore, we can 
conclude that when the viscosity of a working fluid is sen- 
sitive to the variation of temperature or the temperature 
difference of the application is large, the variable viscosity 
effect has to be taken into consideration. When neglected, 
it can result in a considerable error in the heat transfer 
coefficient. 
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